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SI Materials and Methods
Animals. The retinal degeneration (rd) mouse line was obtained
from Charles River Laboratories (line C3H/HeN; strain code
025). The line is homozygous for the retinal degeneration allele
Pdebrd1 (the β-subunit of the cGMP phosphodiesterase) (1). The
Channelrhodopsin-2 (ChR2)-expressing line was obtained from
Jackson Labs (B6.Cg-Tg(Thy1-COP4/EYFP)9Gfng/J; stock no.
007615). The line is hemizygous for a construct consisting of
ChR2 fused to Yellow Fluorescent Protein (ChR2-YFP) under
the control of the Thy1 promoter (2).
To generate mice with both retinal degeneration and ChR2,

wecrossedtheC3H/HeNlinewiththeThy1ChR2-YFPline.Thefirst-
generation line was then backcrossed with the parent C3H/HeN
line.Theresultingline,identifiedusingstandardPCRgenotyping,was
then homozygous for the mutant Pdebrd1 gene and hemizygous for
ChR2-YFP; we refer to this line in this paper as the Thy1-ChR2 rd1/
rd1 line. All procedures on experimental animals were carried out
under the regulation of the Institutional Animal Care and Use
Committee (IACUC) of the Weill Cornell Medical College of
Cornell University and in accordance with NIH guidelines.

Prosthetic Device.The device consists of a camera, an encoder, and
a stimulator. Images taken by the camera are converted into
electrical pulses by the encoder (see next section), which runs
on an OMAP 3530 processor (Texas Instruments). The pulse
patterns are then converted to blue light pulses, which are de-
livered to the retina using a minidigital light projector (mini-DLP)
(Pico projector, Texas Instruments), which we modified to deliver
0.7 mW/mm2 of 475 nm light at the retina using a light-emitting
diode (LED) (Xlamp XP-E blue LED; CRE, Inc.). The DLP
contains a grid of mirrors (a digital micromirror device), whose
positions can be switched with very high spatial and temporal
resolution; each mirror is 7.56 × 7.56 μm, and monitor speed is
1,440 Hz. Signals from the encoder control the switching of the
mirrors, allowing light from the LED to reach the retina. The
high spatial and temporal resolution allows the delivery of pulses
whose spatial extent can be smaller than the diameter of a cell
and whose time course can be less than a millisecond. For the
recording experiments, the prosthetic device was mounted above
the recording chamber as shown in Fig. S5A.
For Figs. 2–4, the movies were taken in advance and presented

from stored versions. They were passed through the encoder, as
described above, and then presented to the retina via the mod-
ified mini-DLP. When presenting unencoded movies, as for the
standard optogenetic method, the movies were presented with
no conversion except from gray scale to blue scale (to excite the
ChR2); i.e., the intensity values of the movies were fed directly
to the modified mini-DLP’s output.

Encoder. The encoder is a retinal input/output model generated
from data taken from the normal retina. It is a linear-nonlinear
(LN) cascade built to capture stimulus/response relations for
a broad range of stimuli, followed by a Poisson spike generator
(for general review of linear-nonlinear cascade models for
retina and other systems, see refs. 3 and 4).
Firing rate at time t of the mth neuron in response to stimulus

S is given by

λmðtÞ ¼ NmððS ∗LmÞðtÞÞ; [1]

where * denotes spatiotemporal convolution, Lm is a linear filter
corresponding to the mth neuron’s spatiotemporal impulse re-

sponse, and Nm is a function that describes the mth neuron’s
nonlinearity. Lm is parameterized as a product of a spatial
function (weights at each pixel) and a temporal function [a sum
of raised cosines (5, 6)]. The nonlinearities Nm are parameter-
ized as cubic splines. We found the values of these parameters by
maximizing the likelihood that the model produces the experi-
mentally observed ganglion cell spike trains. To make the search
more efficient, we take a two-step approach. We first assume
that the nonlinearity is an exponential, as this takes us to the
vicinity of a global maximum (7); we then use the parameter
values obtained from this as a starting point to continue the
search (for the linear filter and spline parameters). The param-
eters for each were found by coordinate ascent [i.e., by alter-
nating stages of maximizing the log-likelihood with respect to
(i) the filter parameters and (ii) the spline coefficients until
a maximum was reached). For the data shown here, we treated
the cells as independent. We also have a form of the model that
includes a coupling term among the neurons, as in refs. 6, 8, and
9. Thus far, the results show that the form with no coupling gives
reliable predictions (8, 9) and is easier to use for the prosthetic,
but both are in hand (8, 9).
In brief, the model captures in a compact form the processing

that the retina performs, including center-surround organization,
temporal filtering, and spike generation. Briefly, images come
in, they are convolved with a spatiotemporal filter (with positive
and negative lobes), then are passed through a nonlinearity, and
converted to spikes by a Poisson generator. The model captures
the processing in a data-driven way in that the spatial and tem-
poral coefficients of Lm and the shape of the nonlinearity, Nm,
are determined directly from measured responses, giving them
the accuracy to produce normal output.
Note that we refer to the “encoder” as the complete encoding

device; it is, essentially, a model retina. Similar to the normal
retina, the encoder consists of arrays of smaller encoders, one for
each ganglion cell type. The different encoders all use the same
model structure, the LN cascade given above; what makes them
different from each other are the numerical values of the pa-
rameters. For example, there is a separate encoder for ON
transient cells, for ON sustained cells, etc., or, in the monkey, for
midget ON cells, for midget OFF cells, etc. As shown throughout
the paper (Fig. 2 and Figs. S1 and S4), the input/output relations
for these cell types are faithfully captured by their encoders. For
further quantification on the effectiveness of the encoders, see
ref. 10. In the building of the encoders, we measured performance
using standard cross-validation, i.e., using out-of-sample stimuli
drawn from the same statistical class as the training set. Here and
also in ref. 10, we went further, testing performance using stimuli
unrelated to the training set (a broad range of natural images,
including faces, landscapes, children playing, etc.). These results
demonstrate not only that the encoders perform well for out-of-
sample stimuli with similar statistics, but also that they generalize
to unrelated stimuli with different statistics.
To make the model effective on a broad range of stimuli,

we used a nonstandard approach. Briefly, the classic, biological
approach to improve retinal models has been to build adaptive
mechanisms into them, for example, filters that allow the model
to adapt to different image statistics (11, 12). These approaches
include quasi-linear models that have components that explicitly
adapt (e.g., parameters that depend directly on the statistics of
the input; see ref. 11, where the time constant of a filter was
made to depend on input contrast) or nonlinear models in which
the adaptation is an emergent property of the nonlinear dynamics
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(12). These strategies, however, are not easy to implement in
a data-driven way: for the approach in ref. 11 and for similar
approaches, the number of parameters is too large for the
amount of data that can be obtained from retinal recordings,
and, for the nonlinear model, the functional form to use for the
dynamics (e.g., to cause it to accurately capture responses to
a broad range of stimuli) is not clear. To address the problem, we
developed, instead, a machine learning approach. With a mini-
mal enlargement of the stimulus set (white noise and particular
natural scene movies) we obtained a linear-nonlinear cascade
model that generalized broadly (white noise, gratings, landscapes,
people walking, cars driving, faces, animals, etc.). We reasoned
that this might work because white noise and natural scenes are
complementary: in both the temporal and spatial domains, nat-
ural scenes are much more heavily weighted toward low fre-
quencies than white noise, and vice versa. The results showed
that this strategy was very effective: the combined stimulus
set allowed sampling of a diverse space of inputs that drove the
optimization to a different location in parameter space than was
found by either stimulus set alone (or by averaging the two).
With respect to light levels and contrast, these are addressed

using a preprocessing step, whereby the light level and contrast
range are rescaled to fall within the operating range of the en-
coders. The rescaling occurs through a front end preprocessor:
briefly, the images pass through a camera, then a preprocessor—
which does the rescaling to accommodate changes in light level
and contrast in the environment—and then the encoder.
For the images/movies shown in these experiments, the

encoders were built to operate in the following range on the basis
of the images presented to the normal retina: mean light level was
1.7 μW/cm2 (photopic range) and rms contrast was 0.27 μW/cm2;
intensity was measured using a New Focus 3803 Power Meter,
and the spectrum of the monitor is given in ref. 13. (The light
intensity coming out of the prosthetic is higher to drive the
ChR2, as indicated above, under Prosthetic Device.)

Confusion Matrices. Confusion matrices were generated as in
ref. 14. Briefly, for each presentation of a stimulus, si, a response,
r, was recorded. The response was decoded by choosing the
stimulus most likely to have produced it, that is, the stimulus for
which p(sijr) was maximal. As is standard, p(sjjr) was calculated
from p(rjsi) using Bayes theorem, which states that p(sijr) =
p(rjsi)p(si)/p(r). Because p(si) was set equally for all stimuli in this
experiment, p(sijr) was maximized when p(rjsi) was maximized.
For each presentation of stimulus si that resulted in a response r
that was decoded as the stimulus sj, the entry at position (i,j) in
the confusion matrix was incremented.
Each set of matrices was constructed from two sets of data:

a training set and a testing set. The training set for all cases was
the same, consisting of responses produced by the normal, wild-
type retina. The test sets in Fig. 3 were out-of-sample responses
from the normal retina (Fig. 3, Top), responses from blind retinas
treated with the encoder-ChR2 prosthetic (Fig. 3, Middle), and
responses from blind retinas treated with the standard opto-
genetic prosthetic (Fig. 3, Bottom).
The stimuli were movies of natural scenes (15 movies, each

667 ms in duration, each presented 60 times). For each stimulus,
the response r was taken to be the spike train spanning 500 ms
after stimulus onset. Spike generation was assumed to be in-
homogeneous Poisson, allowing response probability for the
500-ms response to be calculated as the product of the proba-
bilities for each bin in the response.
An array of bin sizes from 50 to 10 ms were used. The bin size

shown in Fig. 3 was 50 ms; the smaller bin sizes are shown in Fig.
S7, and the results, as shown, are very similar as those in Fig. 3.
When decoding the responses for the populations of cells (the
right-most matrices of Fig. 3 A and B), the response distribution

for the population was computed by assuming that the cells were
conditionally independent: this was done for all groups.
Performance was quantified using “fraction correct,” which

was the fraction of times the responses were correctly decoded,
averaged over all stimuli. For each matrix, the fraction correct
was the mean of the values on the diagonal.

Stimulus Reconstructions. As mentioned in the main text, for these
experiments, we presented an image to the two prosthetic systems—
our method and the standard optogenetic method—and recorded
ganglion cell responses. To obtain a large enough dataset for the
complete reconstruction, we moved the image systematically
across the region of retina from which we were recording, so that
responses to all parts of the image could be obtained with a single
or small number of retinas. Approximately 9,800 ganglion cell
responses were recorded for each image.
The reconstructions were carried out on a processing cluster in

blocks of 10 × 10 or 7 × 7 pixels (checks). The decoding was
performed using maximum likelihood; that is, for each block, we
found the array of gray values that maximized the probability of
the observed responses, r (following ref. 4 for high-dimensional
searches). Briefly, we used gradient ascent techniques. We started
at a random point in stimulus space, sk. We evaluated the prob-
ability distribution p(rjsk) for this stimulus and also calculated
the slope of this probability distribution with respect to each
dimension of the stimulus. We then created a new stimulus, sk+1,
by changing the stimulus sk in the direction of increasing prob-
ability (as determined from the slope of the probability distri-
bution). This process continued iteratively until we reached the
peak of p(rjs). The reconstructions of each block were performed
using multiple random starting points to confirm that they con-
verged to the same peak.
The stimulus consisted of a uniform gray screen presented for

1 s, followed by the image of the baby’s face for 1 s. The pixelation
of the face, 35 × 32 pixels, was chosen so that the features of
the face could be readily discerned. The choice of 35 × 32 pixels
is consistent with the fact that facial recognition makes use of
spatial frequencies at least as high as eight cycles per face, which
requires at least 32 pixels in each dimension for adequate sam-
pling (15). In Fig. 4, each pixel corresponded to 2.6 ° × 2.6 °of
visual space, which corresponds to 12–20 ganglion cells in the
mouse retina (16, 17) (center to midperiphery). Consistent with
this, we reconstructed each image using 12–20 ganglion cell re-
sponses per pixel (per check), with the ratio of ON to OFF cells
varying from location to location depending on the number of
cells recorded from the array at a given location. See Fig. S3 for
still images from a reconstructed movie using just OFF cells (as
described in the main text Discussion).
For each stimulus, the response was taken to be the spike train

spanning the 1-s stimulus and binned with 0.67-ms bins. Spike
generation was assumed to be inhomogeneous Poisson, allowing
response probability for the complete response to be calculated
as the product of the probabilities for each bin.

Optomotor Tracking. The grating stimuli were passed through the
encoder (specifically, an array of transient ON cell encoders; see
main text for the reasoning) and then presented to the retina via
a liquid crystal display (LCD), which was illuminated from be-
hind with a bank of blue light-emitting diodes (LEDs) (to excite
the ChR2), as shown schematically in Fig. S5B. For the standard
optogenetic method, the grating stimuli were presented as is,
except that the gray scale was converted to blue scale (to excite
ChR2); i.e., the intensity values of the grating stimuli were fed
directly to the LCD’s output.
Eye tracking was measured following ref. 18. Briefly, the mouse

was placed in an acrylic cylinder facing the LCD panel. Its head
was positioned and held stable using a headpost. To collect eye-
tracking data, the eye was imaged using infrared illumination and

Nirenberg and Pandarinath www.pnas.org/cgi/content/short/1207035109 2 of 9

www.pnas.org/cgi/content/short/1207035109


an ISCAN infrared video camera. The ISCAN software finds the
horizontal and vertical coordinates of the centers of the corneal
reflection and the pupil (sampled at 60 Hz) and measures the
difference between these two points along the horizontal and
vertical axes. A schematic of the setup is shown in Fig. S5B.
Note that the baseline control for these experiments was

a measure of eye movements from the same animal without the
stimulus, as this captures the baseline drift that occurs with
blind mice. As shown in ref. 18, normal tracking is highly variable
among mouse strains, and it is not possible to obtain tracking
behavior from the rd strain (because it is blind); for this reason,
the eye movements that occur without the stimulus, and the eye
movements that occur with the unencoded stimulus, served as
the two controls.

Multielectrode Recording/Pharmacology. Extracellular recordings
were made using a multielectrode array, as in refs. 13, 14, 19, and
20. Spike trains were recorded and then sorted into units (cells)
using a Plexon Instruments Multichannel Neuronal Acquisition
Processor. Neurotransmitter blockers were used to ensure the
abolition of photoreceptor-driven responses, as in ref. 21. The
following were used: 10 μM CPP [(±)-3-(2-carboxypiperazin-4-yl)
propyl-1-phosphonic acid], 10 μM NBQX [1,2,3,4-tetrahydro-6-
nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulfonamide], which block
NMDA and AMPA/kainate receptors, respectively, and 80 μM
APB (2-amino-4-phosphonobutyrate), which blocks metabotropic
glutamate receptors.

Preparing Retinal Sections and Whole Mounts. Mice were eutha-
nized by CO2, and the eyes were removed. Retinas were sepa-
rated from the rest of the eye and fixed in 4% paraformaldehyde
(wt/vol) in 0.1 M PBS, pH 7.4, for 15–30 min. Following three
washes with PBS, the retinas were cryoprotected in graded
sucrose solutions (15%, followed by 30%). Sections were then
cut on a cryostat at 14 μm. For retinal whole mounts, the tissue

was fixed in 4% paraformaldehyde/0.1 M PBS, washed in PBS,
and mounted flat on a slide, lightly coverslipped.

SI Figures. As mentioned in the main text Discussion, the pros-
thetic method is effective because the encoders very reliably
reproduce ganglion cell-firing patterns and because ChR2 is able
to follow the patterns that the encoders produce. In the main
text (Fig. 2), we demonstrated this by showing the firing patterns
of the normal retina and the firing patterns of the degenerated
retina when it was driven by the encoder-ChR2 prosthetic.
Here we break it down further and include the firing patterns

of the encoders (Fig. S1). The top set of rasters shows the normal
ganglion cell-firing patterns for several cells [using long (10-s)
stretches]. The next set of rasters shows the firing patterns pro-
duced by the encoders for each of these cells (i.e., they show
the output of the linear-nonlinear-Poisson model for each cell).
Finally, the third set of rasters shows the firing patterns produced
by ganglion cells from a degenerated retina when it is driven by
the encoder-ChR2 prosthetic. In other words, the second set of
rasters shows the extent to which the encoders follow the true
cells, and the third set of rasters shows the extent to which the
ChR2-expressing ganglion cells follow the encoders.
Fig. S2 shows the first 2 s in an expanded view, so the corre-

spondence is visible at the level of individual spikes. We show this
because it is interesting how well the ChR2-expressing ganglion
cells follow the encoder’s signals. Although the cells occasionally
fail to fire, or fire doublets or triplets to a single light pulse,
overall the correspondence is very tight. The implication of this
is that the statistics of neuronal spike trains produced by natural
stimuli are compatible with the properties of ChR2. We mention
this because ChR2’s usefulness for prosthetics has been a sub-
ject of discussion in the field because ChR2’s properties are not
as well-matched to visual stimuli as when they are presented
directly, that is, unfiltered through neurons. For a review of the
properties of ChR2, see ref. 22.
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Fig. S1. Firing patterns from the normal retina, from the encoders, and from a blind retina driven by the encoder-ChR2 prosthetic. (A) Normal ganglion cell-
firing patterns for several cells (in response to movies of natural scenes). This array of cells includes both ON transient and ON sustained cells (for other cell
classes, see Fig. 2 of main text and Fig. S4). (B) The firing patterns produced by the encoders for each of these cells. (C) The firing patterns produced by ganglion
cells from a blind retina when it was driven by the encoder-ChR2 prosthetic. As shown, the encoders faithfully reproduce normal ganglion cell responses, and
the ChR2-expressing ganglion cells faithfully follow the signals produced by the encoders. (D) Recordings from a blind, degenerated retina that does not
express ChR2 to reiterate that ganglion cells from retinas that do not express ChR2 do not respond to the stimulus.
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Fig. S2. Expanded view of the B and C in Fig. S1. The top set of rasters shows the firing patterns of the encoders (from Fig. S1B), and the bottom set of rasters
shows the firing patterns of the ChR2-expressing cells (from Fig. S1C). Bin size is 2 ms; in Fig. S1, bin size is 25 ms. As mentioned, although cells occasionally fail
to fire, or fire doublets or triplets to a single light pulse, overall the correspondence is very tight (SI Materials and Methods; see SI Figures for discussion.).
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Fig. S3. Image reconstructions using only the responses of OFF ganglion cell encoders; this provides a measure of the quality of vision when only these cells
are used. (A) Original images; these are frames from a short movie. (B) Images reconstructed using the responses of both ON and OFF ganglion cell encoders.
(C) Images reconstructed using the responses of just ON ganglion cell encoders. (D) Images reconstructed using the responses of only OFF ganglion cell en-
coders. Each movie was reconstructed in blocks of 10 pixels by 10 pixels by 5 frames. As in Fig. 4 in the main text, the decoding was performed using maximum
likelihood; that is, for each block, we found the array of gray values that maximized the probability of the observed responses (following ref. 4 for high
dimensional searches). (E) Image reconstructed from the responses of real ganglion cells using the standard method (only ChR2, no encoder), using the same
resolution as the images in A–D.
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Fig. S4. Primate (macaque) retina: firing patterns from ganglion cells from normal retinas and from their encoders. (A) Normal ganglion cell-firing patterns in
response to movies of natural scenes. ON and OFF midget and parasol cells are indicated; midget and parasol cells are classified on the basis of receptive field
diameters, as in ref. 1. (B) The firing patterns produced by the encoders for each of the cells in A. Recordings from primate retina were carried out using
a multielectrode array and the same conditions as described above for mouse retina, except that Ames’ medium was used (1). The stimulus protocol was the
same as for the mouse experiments, and the region of recording was midperipheral retina. For the models, we used the approach described above with the
addition of a postspike feedback (2). Experiments were performed in accordance with the institutional guidelines for animal welfare.

1. Chichilnisky EJ, Kalmar RS (2002) Functional asymmetries in ON and OFF ganglion cells of primate retina. J Neurosci 22:2737–2747.
2. Pillow JW, et al. (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454:995–999.
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Fig. S5. Schematics of the stimulation setups. (A) For the multielectrode recording experiments, the mini-DLP was positioned above the recording chamber, as
described in SI Materials and Methods. (Scale bar, 0.5 in.) (B) For the behavior experiments, the stimulus was delivered using an LCD panel, whose light source
was a bank of LEDs, as described in SI Materials and Methods.
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Fig. S6. Schematic of the prosthetic device incorporated into a pair of eyeglasses. All of the components, including the camera, the encoder, and the mini-DLP
can fit into the eye pieces of a pair of eyeglasses. (A) Side view of the eyeglasses; the components are identical to those in Fig. S5, except the stimulator of the
mini-DLP is rotated 90 ° (LED on top), and the lens is replaced by a lens appropriate for interaction with the eye’s optics. The circuit board is also separated from
the stimulator, which cannot be seen in the side view, but can be seen in B. (B) View from inside the eyeglasses, to show component layout.
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Fig. S7. Confusion matrices generated using an array of bin sizes. Ganglion cell responses were decoded using 50-, 30-, and 10-ms bins. As shown, the
conclusions are the same as those presented in the main text, Fig. 3.
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Movie S1. Animated stimulus/response relations. The movies show the complexity of the stimulus/response relations to natural images. To provide intuition,
we used two movies: one of a baby playing and one of movement through a grassy scene. In the baby movie, the features of the images are relatively coarse
(the shots are fairly close up so they cover large areas of the visual field), which makes the input/output relations relatively easy to follow (one can relatively
easily discern the features in the movie that trigger the firing). In the grassy movies, the features are fine; this causes intuition to slip away because the full
dimensionality of the model now matters. What is important is that the encoder performs well under both conditions, and we emphasize that these are just
two short examples (see the many other figures in this paper, e.g., Fig. S4 above for primate responses). Note also that the latencies are different for the retinas
in which encoding of the visual input is taking place (the normal retina and the blind retina driven by the encoder-ChR2 prosthetic) versus the retinas driven by
the standard optogenetic method. The latencies for first two correspond to the normal latencies of ganglion cells from mouse retina, which range from 50 to
300 ms (1). In this particular movie, they range from ∼160 to 250 ms. For the standard optogenetic method, the latencies are controlled only by the properties
of ChR2 (and the ganglion cell that expresses it) and are much shorter [∼10–50 ms, depending on the brightness of the stimulation (the temporal contrast)]. In
each movie, four cells are shown; receptive field locations with approximate sizes are indicated by the colored Xs.

Movie S1

1. Carcieri SM, Jacobs AL, Nirenberg S (2003) Classification of retinal ganglion cells: a statistical approach. J Neurophysiol 90:1704–1713.
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